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Abstract:  Two-phase sampling for regression has proven to be efficient in estimation especially when there is high 

correlation coefficient between the study and the auxiliary variable(s). However, the presence of extreme value 

makes the distribution to violate the basic statistical assumptions. Violation of linearity assumption by the 

concerned distribution, among other assumptions, may lead to type-I or type-II error in Two-phase sampling for 

regression. This study applied non-linear data transformation to the study variable and/or auxiliary variables. It was 

confirmed that data transformation is an efficient empirical tool to correct the effect of linear assumption violation 

in Survey Statistical Inference. However, when such data transformation is applied only to the auxiliary variable 

(that is, not transforming the study variable) even in the presence of high correlation coefficient, less efficient 

estimate would be obtained. It was concluded that simultaneous application of data transformation on both the 

study and auxiliary variables rather than correlation coefficient should be the condition for selecting efficient 

estimator in Two-phase sampling in Survey Statistical Inference. 
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Introduction 

The use of inexpensive and readily available auxiliary 

variable(s) has improved estimation in survey statistical 

inference. Two-phase sampling uses auxiliary information in 

estimation, hence, making two-phase sampling efficient over 

single-phase sampling. Ogunyinka and Sodipo (2013) 

empirically established the superiority of two-phase sampling 

for regression over two-phase sampling for ratio when the 

linear relationship line between the study variable (𝑦) and the 

auxiliary variable (𝑥) has a zero interception on the 𝑦 axis. 

Leys et al. (2013) and Inhyeok and Un (2019) concluded that 

the presence of extreme value or outlier in a distribution has 

been confirmed to lead to violation of basic statistical 

assumptions. Linearity assumption is one of the basic 

statistical assumptions that may be violated. Two-phase 

sampling for regression requires the confirmation of the non-

violation of the linearity assumption between 𝑦 and 𝑥 

variables. Osborne (2002) ascertained that the violation of 

linearity assumption may increase the probability of 

committing type-I or type-II error, hence, recommending non-

linear data transformation as a solution to the violation of 

linearity assumption in linear regression model. Agunbiade 

and Ogunyinka (2013) established the effect of correlation 

levels on the precision of estimates in two-phase sampling.  

There is need to know the reaction of the two-phase sampling 

estimator when non-linear data transformation is applied in 

the presence of varying correlation coefficient levels. This 

research empirically ascertains the justification of data 

transformation in correcting the effect of extreme values in the 

distribution. It also investigates to know the priority between 

data transformation and high correlation level in obtaining 

précised estimates in two-phase sampling. Further enquiry 

will also be carried out to ascertain the reaction of the study 

and auxiliary variables to data transformation in two-phase 

sampling for regression. 

 

Materials and Methods 

Data transformation in linear regression 

The linear regression model is presented as 

𝑦 = �̂� + �̂�𝑥 + 𝑒.                                       (1) 

Where �̂� represents the estimated interception of the model 

line on the 𝑦 axis of the scattered plot and �̂� is the estimated 

regression coefficient of the model. 

 

The use of equation (1) above requires the absence of extreme 

values in the distribution. Extreme value can lead to the 

violation of statistical assumptions (Huxley, 2016; Machado, 

2018). Among these assumptions is the linearity assumption. 

Linearity assumption indicates that the relationship between 𝑦 

(dependent or study variable) and 𝑥 (independent or auxiliary 

variable) must be linear. Hence, the relationship must product 

a straight line on the scattered plot of 𝑦 against 𝑥. Osborne 

(2002) confirmed that the violation of this assumption may 

increase the probability of committing type-I or type-II error. 

Marija (2004) established that data transformation of variables 

can strengthen non-linear relationship to a linear (or an 

assumed linear) relationship. O’Hara and Hotze (2010) 

emphasis that the main purpose of data transformation is to 

get a sample data to conform to the assumptions of parametric 

statistics such as ANOVA, t-test and linear regression or to 

manage outliers or extreme values in a distribution. Marija 

(2004) established that data transformation technique is 

neither a cheating nor distortion of the true picture of the data 

under consideration; rather, it is a legitimate statistical tool. 

Literatures established that among the methods to detect an 

efficient transformed dataset are to establish linearity, obtain 

the coefficient of determination (𝑅2) and to conduct a 

significant test of the independent variable on the response 

variable. It is expected that coefficient of determination of the 

transformed data will be higher than the non-transformed or 

original data (though, may not be possible in all cases) and the 

independent variables will be significant to the response 

variable. Among the non-linear data transformation tools are 

Logarithm (of any desired based number), inverse, power, 

quadratic, square, square root, cube and cube root 

transformations. Table 1 shows some common data 

transformation models with the corresponding back 

transformation models. 
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Table 1: The common statistical non-linear transformation techniques 

S/

N 
Method Transformation Regression Equation 

Predicted/Back 

transformation value 

(�̂�) 

01 Standard linear 

regression 

None 𝑌 = 𝑏0 + 𝑏1𝑋 �̂� = 𝑏0 + 𝑏1𝑋 

02 Exponential model Dependent variable 

(𝑙𝑜𝑔10𝑌) 

𝑙𝑜𝑔10𝑌 = 𝑏0 + 𝑏1𝑋 �̂� = 10(𝑏0+𝑏1𝑋) 

03 Quadratic model Dependent variable 

(𝑆𝑞𝑟𝑡(𝑌)) 

𝑆𝑞𝑟𝑡(𝑌) = 𝑏0 + 𝑏1𝑋 �̂� = (𝑏0 + 𝑏1𝑋)2 

04 Reciprocal model Dependent variable 

(𝑦−1) 
𝑌−1 = 𝑏0 + 𝑏1𝑋 �̂� = 1 (𝑏0 + 𝑏1𝑋)⁄  

05 Logarithm 

transformation 

Independent variable 

(𝑙𝑜𝑔10𝑋) 

𝑌 = 𝑏0 + 𝑏1𝑙𝑜𝑔10𝑋 �̂� = 𝑏0 + 𝑏110𝑋 

06 Power model Dependent variable 𝑙𝑜𝑔10𝑌 and 

independent variable 𝑙𝑜𝑔10𝑋 

𝑙𝑜𝑔10𝑌 = 𝑏0 + 𝑏1𝑙𝑜𝑔10𝑋 �̂� = 10(𝑏0+𝑏1𝑙𝑜𝑔10𝑋) 

07 Square model Independent variable (𝑋2) 𝑌 = 𝑏0 + 𝑏1𝑋2 �̂� = 𝑏0 + 𝑏1√𝑋 

 
 

 

Back transformation is used to return a transformed predicted 

value to its original scale. Miller (1984) confirmed that back 

transformation of the predicted value gives value for median 

response but not the mean response as it is expected. He 

(Miller) concluded that back transformation on the mean of 

the dependent variable results to a serious bias. Hence, he 

established a solution to minimize this bias. Similarly, Jia and 

Rathi (2008) established a more efficient solution that almost 

removes the bias introduced by back transformation on the 

dependent variable. 

Two-phase sampling for regression 

Two-phase sampling for regression becomes necessary, 

among other assumptions, when �̂� ≠ 0 in (equation (1)). The 

two-phase sampling for regression estimator for estimating the 

population mean is presented as;  

𝑦
𝑑𝑙

= 𝑦 − �̂� (𝑥 − 𝑥
′
).                                (2) 

Where 𝑥
′
= First phase sample mean of the auxiliary variable, 

𝑥= Second phase sample mean of the auxiliary variable, 

and𝑦= Second phase sample mean of the study variable. 

Okafor (2002) presented the estimated variance of 𝑦
𝑑𝑙

 as;  

�̂�(𝑦
𝑑𝑙

) = [
1

𝑛′
−

1

𝑁
] 𝑠𝑦

2

+ [
1

𝑛
−

1

𝑛′
] (𝑠𝑦

2 + �̂�2𝑠𝑥
2

− 2�̂�𝑠𝑥𝑦).                                   (3) 

 

In two-phase sampling for regression, in addition to the 

confirmation of linearity assumption, there is need for 

increase in the coefficient of determination (𝑅2) (if possible) 

and significance of the independent variable(s). Data 

transformation is expected to establish a positive correlation 

(relationship) between the study variable (𝑦) and the auxiliary 

variable (𝑥).  

Correlation level in two-phase sampling for regression 

Agunbiade and Ogunyinka (2013) established that different 

correlation levels in linear regression havesignificant effect on 

the precision of estimate in two-phase sampling for 

regression. It was ascertained that the higher the correlation 

coefficient, the better the precision of estimates in two-phase 

sampling. They amended the correlation coefficient 

boundaries for the correlation coefficient classification of 

Mukaka (2012). The updated correlation coefficient is 

presented in Table 2. 

 

 

 

Table 2: Correlation Coefficient interpretations proposed 

for this investigation 
 

Size of 

Correlation 
Interpretation 

0.90 to 1.0  Very high Positive (Negative) 

Correlation 

0.70 to <0.90  High Positive (Negative) Correlation 

0.50 to <0.70  Moderate Positive (Negative) 

Correlation 

0.30 to <0.50  Low Positive (Negative) Correlation 

0.00 to <0.30  Negligible Correlation 

 

By further simplification, equation (3) can be expressed with 

respect to the correlation coefficient (𝜌) giving that (�̂� =

�̂�
𝑠𝑦

𝑠𝑥
). 

�̂�(𝑦
𝑑𝑙

) = [
1

𝑛′
−

1

𝑁
] 𝑠𝑦

2 + [
1

𝑛
−

1

𝑛′
] 𝑠𝑦

2[1 − �̂�2]. (4) 

This research empirically ascertains priority between the 

correlation level and the data transformation inincreasing the 

precision of estimates in two-phase sampling for regression. 

Coefficient of Variation (CV) is statistical tool that compares 

the precision of estimates. The lower the CV, the higher the 

precision of the estimate under consideration. The no-scale or 

no-unit comparison is one major advantage of using 

coefficient of variation. Sequel to this advantage, this analysis 

uses CV for comparison and decision making. Equation (5) 

presents the percentage coefficient of variation used in this 

study. 

𝐶𝑉(𝑦
𝑑𝑙

) =

√�̂�(𝑦
𝑑𝑙

)

𝑦
𝑑𝑙

∗ 100%                          (5) 

 

Results and Discussion 

This section uses data mined by Okikisoft software from 

www.sourceforge.net about the properties of the repository. 

Okikisoft is a source forge software repository data miner. 

Total software rater per software is used as the study variable 

(𝑦) while the total download per software is used as the 

auxiliary variable (𝑥), see Ogunyinka and Badmus (2014) for 

details. This section analyses data in two different categories. 

The first part analyses the data and compares results to justify 

the importance of data transformation in correcting the effect 

of extreme values in a distribution. The second part analyses 

data and compares results to establish the priority between 

correlation level and data transformation in order to obtain 

efficient estimates. 
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Analyses based on data transformation 

Figure 1 reveals the violation of linearity assumption by the 

original data through the scattered plot. Fig. 2 reveals the 

satisfaction of linearity assumption using 𝑙𝑜𝑔10 

transformation on both the study and auxiliary variables. 

 

 
Fig. 1: Graph of y against 𝐱 usingthe original data 

 

 
Fig.  2: Graph of Log10y against Log10x using transformed 

data 
 

Analysis for setting priority between correlation level and 

data transformation in two-phase sampling 

This analysis uses non-linear data transformation tools (as 

presented in Table 1) to create over forty (40) tables of 

different transformed distributions among which five (5) 

major analysis tables were sampled for further emphases and 

explanation. Transformation and analysis on each dataset 

produced a summary table each, hence, spanning from tables 

4.0 through 8.0.  

𝑦∗ = 𝛼 + 𝛽𝑥∗                                      (6) 

Equation (6) is used in Tables 4 through 8. However, the true 

representation of 𝑦∗ and 𝑥∗ (either in transformed or original 

state) in equation (6) is presented in the column titled 

“Combination” in each of the five (5) selected tables. 

 

Discussion of Results 

This study aimed to investigate the justification of data 

transformation and prioritise between data transformation and 

the correlation level in obtaining more precise estimate in 

two-phase sampling for regression. Results, shown in Table 3, 

revealed that sample mean estimate obtained with transformed 

data has lower CV of 4.32% over that of original data of 

7.32%. Hence, it makes transformed data model and estimate, 

in two-phase sampling, more efficient over that of original 

data model and estimate, respectively. Table 5 revealed that 

transformed data estimates with high (0.804) and moderate 

(0.645) correlation levels have rated 𝐶𝑉 = 5.21% and 𝐶𝑉 =
6.51% precision, respectively, over original (untransformed) 

data estimate with very high correlation level of 0.952. The 

presence of high correlation (in the original data) did not yield 

high précised estimate. This is contradictory to the conclusion 

of Agunbiade and Ogunyinka (2013), Cochran (1940) and 

Okafor (2002). This established that when correlation level is 

high but the concerned data violate linearity assumption, such 

data will produce a high CV, leading to low précised estimate. 

However, if data transformation yields in a lower correlation 

level, estimates from such distribution will produce a lower 

CV, hence, making such estimates of high precision. 

Table 6 revealed data transformed estimates with high (𝑟 =
0.745) correlation level and moderate (𝑟 = 0.692) 

correlation level have high rated precisions of 𝐶𝑉 = 5.9% and 

𝐶𝑉 = 8.35%, respectively as against the original 

(untransformed) dataset estimate with moderate correlation 

level of 𝑟 = 0.643 but with least rated precision of 𝐶𝑉 =
23.97%. Hence, it is established that less précised estimates 

will be obtained from original (untransformed) data with low 

correlation or the same correlation level with transformed 

data. Once again, significance of data transformation is 

established either at the lowest or highest correlation level. 

In Table 7, all the five (5) estimates belong to the same 

moderate correlation level. The first rated estimate of 𝐶𝑉 =
6.7% was obtained at 𝑟 = 0.647 under data transformation 

over the second précised rated estimate of 𝐶𝑉 = 10.7% at 𝑟 =
0.564 of the original (untransformed) data. This conforms to 

the earlier results. However, the remaining three estimates at 

𝑟 = 0.591, 0.591 and 0.657 estimates contradicted the earlier 

results. Further examination revealed that in these three 

estimates, only the auxiliary variable (𝑥) was transformed 

while the study variable (𝑦) was not transformed. It was 

observed that estimates that has transformed auxiliary 

variables but original (untransformed) study variable 

performed less efficient to estimates with both transformed 

study and auxiliary variables. In fact, it was observed that 

estimates with untransformed study variable but transformed 

auxiliary variable, though yielded high correlation coefficient 

but performed less efficient to the estimate with 

untransformed (original) study and auxiliary variables. 

 

 

 

 

Table 3: Analysis to justify the importance of data transformation 

Combination 
Linearity  

Assump. 
Significance 𝛃∗ 𝐍 𝐧′ 𝐧 𝐲

𝐝𝐥
 𝐒𝐄(𝐲

𝐝𝐥
) CV 

Rating  

based on CV 

𝐲 𝐱⁄  Violated Significant 0.0000571 17226 128 40 53.8037 3.9363 7.32% 2nd 

𝐥𝐨𝐠𝟏𝟎𝐲 𝐥𝐨𝐠𝟏𝟎𝐱⁄  Satisfied Significant 0.432 17226 128 40 1.2888 0.0556 4.32% 1st 

 

 

Table 4:  Analysis result 1 
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Combination 
R /  

Correlation Level 
Linearity Assump. 𝛃∗ 𝐍 𝐧′ 𝐧 𝐲

𝐝𝐥
 𝐒𝐄(𝐲

𝐝𝐥
) CV Rating based on CV 

𝐲 𝐱⁄  0.414: Low Violated 0.000015 11448 128 40 14.06786 1.8691 13.29% 5th 

𝐥𝐨𝐠𝟐𝐲 𝐥𝐨𝐠𝟐𝐱⁄  0.488: Low Satisfied 0.322 11448 128 40 3.16154 0.2181 6.90% 2nd 

𝐲 √𝐱⁄  0.515: Moderate Satisfied 0.025 11448 128 40 13.98323 1.7977 12.86% 4th 

√𝐲 𝐥𝐨𝐠𝟐𝐱⁄  0.591: Moderate Satisfied 0.414 11448 128 40 3.273862 0.2211 6.75% 1st 

𝐲 𝐥𝐨𝐠𝟏𝟎𝐱⁄  0.629: Moderate Satisfied 11.477 11448 128 40 13.83184 1.6956 12.26% 3rd 

 

 

Table 5:  Analysis result 2 

Combination 
R /  

Correlation Level 
Linearity Assump. 𝛃∗ 𝐍 𝐧′ 𝐧 𝐲

𝐝𝐥
 𝐒𝐄(𝐲

𝐝𝐥
) CV 

Rating  

based on CV 

𝐲 𝐱⁄  0.952: Very high Violated 0.000015 13608 128 40 48.5253 5.7772 11.91% 3rd 

𝐥𝐨𝐠𝟏𝟎𝐲 √𝐱
𝟑⁄  0.645: Moderate Satisfied 0.012 13608 128 40 1.1096 0.0723 6.51% 2nd 

√𝐲𝟑
√𝐱
𝟑⁄  0.804: High Satisfied 0.032 13608 128 40 2.5999 0.1356 5.21% 1st 

 

 

Table 6:  Analysis result 3 

Combination 
R /  

Correlation Level 
Linearity Assump. 𝛃∗ 𝐍 𝐧′ 𝐧 𝐲

𝐝𝐥
 𝐒𝐄(𝐲

𝐝𝐥) CV Rating based on CV 

𝐲 𝐱⁄  0.643: Moderate Violated 0.00012 13014 128 40 17.8727 4.2846 23.97% 3rd 

𝐥𝐨𝐠𝟏𝟎𝐲 𝐥𝐨𝐠𝟏𝟎𝐱⁄  0.692: Moderate Satisfied 0.557 13014 128 40 0.9018 0.0753 8.35% 2nd 

√𝐲𝟑 𝐥𝐨𝐠𝟐𝐱⁄  0.745: High Satisfied 0.327 13014 128 40 2.2219 0.1310 5.90% 1st  

 

 

Table 7: Analysis result 4 

Combination 
R /  

Correlation Level 
Linearity Assump. 𝛃∗ 𝐍 𝐧′ 𝐧 𝐲

𝐝𝐥
 𝐒𝐄(𝐲

𝐝𝐥) CV (%) Rating based on CV 

𝐲 𝐱⁄  0.564: Moderate Violated 5.581*105 28674 128 40 45.433 4.871995 10.724 2nd 

𝐲 𝐥𝐨𝐠𝟏𝟎𝐱⁄  0.591: Moderate Satisfied 30.493 28674 128 40 35.69253 4.804563 13.461 5th 

𝐲 𝐥𝐨𝐠𝟐𝐱⁄  0.591: Moderate Satisfied 9.189 28674 128 40 35.70783 4.804563 13.455 4th 

√𝐲 √𝐱⁄  0.647: Moderate Satisfied 0.006 28674 128 40 5.41253 0.364839 6.741 1st 

𝐲 √𝐱
𝟑⁄  0.657: Moderate Satisfied 0.951 28674 128 40 37.03364 4.621729 12.480 3rd 

 

 

Table 8: Analysis result 5 

Combination 
R /  

Correlation Level 
Linearity Assump. 𝛃∗ 𝐍 𝐧′ 𝐧 𝐲

𝐝𝐥
 𝐒𝐄(𝐲

𝐝𝐥) CV (%) Rating based on CV 

𝐲 𝐱⁄  0.498: Low Violated 0.000164 10719 128 40 18.59269 2.9427 15.827 5th 

𝐲 √𝐱⁄  0.558: Moderate Satisfied 0.101 10719 128 40 20.27614 2.8641 14.125 3rd 

𝐲 √𝐱
𝟑⁄  0.573: Moderate Satisfied 0.925 10719 128 40 20.10558 2.8426 14.139 4th 

√𝐲𝟑
√𝐱⁄  0.612: Moderate Satisfied 0.005 10719 128 40 2.218786 0.1225 5.522 1st 

𝐥𝐨𝐠𝟏𝟎𝐲 𝐥𝐨𝐠𝟏𝟎𝐱⁄  0.703: High Satisfied 0.700 10719 128 40 0.911318 0.0700 7.685 2nd 

 

 

It was, also, observed in Tables 4, 7 and 8 that when only the 

auxiliary variable is transformed but the study variable is not 

transformed, the estimate will not be efficient compared to 

when both the study and auxiliary variables were transformed. 

It is very important to report that this result was confirmed to 

be true in all the data analyses including those analysis tables 

that could not be reported in this article. This significant 

discovery shows that while data transformation is an efficient 

empirical tool for the correction of the effect of extreme 

observations or outlier in any distribution, it is very important 

that both the study and the auxiliary variables must be 

transformed, simultaneously, in order to obtain the most 

efficient estimate in two-phase sampling. Though, this 

discovery is limited to survey statistical inference, it is 

recommended that the general statistical inference should also 

be cautious of this important discovery about data 

transformation method in statistics. Hence, it is recommended 

that similar investigation should be conducted in the general 

statistical inference. 

 

 

 

Conclusion 

The presence of extreme observation or outlier in the 

distribution will lead to the violation of statistical 

assumptions. Violation of basic assumptions like linearity in 

the use of two-phase sampling is a serious challenge even in 

the presence of high correlation coefficient between the study 

and auxiliary variables. Data transformation is a 

recommended efficient empirical tool for the correction of this 

violation. However, data transformation that is applied only to 

the auxiliary variable for the distribution to conform to 

linearity assumption in the presence of high correlation 

coefficient will reduce the efficiency of the estimate. This 

study strongly recommends that for good précised estimates to 

be obtained in two-phase sampling where concerned 

distributions disobey linearity assumption, non-linear data 

transformation must be performed on both the study and 

auxiliary variables, simultaneously, while the correlation 

coefficient attained after data transformation should be a 

secondary condition for the selection of efficient estimate. 
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